APEC-Chiang Mai International Conference IV:
 Innovation of Mathematics Teaching and Learning through Lesson StudyConnection between Assessment and Subject Matter -

CHENG Chun Chor Litwin
The Hong Kong Institute of Education

Report on using Sine Rule and Cosine Rule to demonstrate the connection between Assessment and Subject Matter

Introduction, Hand on assessment

It is difficult to understand mathematical concept in one single lesson. Hence, it is a good approach to work on the exercise on the topic and then through working the example to consolidate the concepts. Such working on the exercise allow us to pick up different pieces of concepts and consolidate them through the problems. It is the hand on working and assessment that help to build the concepts.

The paper would like to discuss the components of Sine Rule and Cosine Rule, its subject matter and the assessment items related, so that assessment items are used as a tools to enhance the advancement of the mathematical concepts.

Subject matter in Sine Rule

Sine Rule Special case (right angle triangle)
Using a right angle, students can explore and obtain the following relations.
$\sin \mathrm{B}=\frac{\mathrm{b}}{\mathrm{c}}, \sin \mathrm{A}=\frac{\mathrm{a}}{\mathrm{c}} 。$
$\Rightarrow \mathrm{c}=\frac{\mathrm{a}}{\sin \mathrm{A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}$.

As $\sin \mathrm{C}=1$, so it is trae that $\frac{a}{\sin \mathrm{~A}}=\frac{\mathrm{b}}{\sin \mathrm{B}}=\frac{\mathrm{c}}{\sin \mathrm{C}}$.
The next step is to establish the formula " $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ " \lrcorner for all triangles.

In the following proof, a related assessment question is attched.

Sine Rule Proof 1

Using the relation of areas of triangles, we have
$\frac{1}{2} \mathrm{abSinC}=\frac{1}{2} \mathrm{bcSin} \mathrm{A}=\frac{1}{2} \mathrm{acSin} \mathrm{B}$
$\Rightarrow \frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}$,

This is the simplest way to establish the formula.

Sine Rule Proof 1b (based on the logic of Proof 1)

Using the median AM of $\triangle \mathrm{ABC}$.

Area $\triangle \mathrm{ABM}=\frac{1}{2}(\mathrm{AB})(\mathrm{BM}) \sin \mathrm{B}$
Area $\triangle \mathrm{ACM}=\frac{1}{2}(\mathrm{AC})(\mathrm{CM}) \operatorname{sinC}$ 。
As both areas are equal and $\mathrm{BM}=\mathrm{CM}, \mathrm{c} \sin \mathrm{B}=\mathrm{b} \sin \mathrm{C}$ 。
$\Rightarrow \frac{c}{\sin C}=\frac{b}{\sin B}$ 。

Sine Rule Proof 2

Using the height h of the triangle as a reference,
$\sin \mathrm{B}=\frac{h}{c}, \sin \mathrm{C}=\frac{h}{b}$,
$\Rightarrow \mathrm{c} \sin \mathrm{B}=\mathrm{b} \sin \mathrm{C}$
$\Rightarrow \frac{c}{\sin C}=\frac{b}{\sin B}$

Sine Rule Proof 2b (based on the logic of the Proof 2)

$\triangle A B C$ with obstue angle B.
draw $C D \perp A B$, meeting the extension of AB at D, then
$\frac{C D}{b}=\sin A, \Rightarrow C D=b \sin A$;
$\frac{C D}{a}=\sin \left(180^{\circ}-B\right)=\sin B, \Rightarrow C D=a \sin B$,
Hence $b \sin A=a \sin B$, and $\frac{a}{\sin A}=\frac{b}{\sin B}$

Similarly, $\frac{b}{\sin B}=\frac{c}{\sin C}$,
Hence $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$.

Question :
In $\triangle A B C$, angle bisector AD of $\angle A$ meets BC at D .
Prove that $\frac{B D}{D C}=\frac{A B}{A C}$

As in diagram, using Sine Rule in $\triangle A B D$ and $\triangle C A D$,
$\frac{B D}{\sin \beta}=\frac{A B}{\sin \alpha}$
$\frac{D C}{\sin \beta}=\frac{A C}{\sin \left(180^{\circ}-\alpha\right)}=\frac{A C}{\sin \alpha}$
(1).(2) $\Rightarrow \frac{B D}{D C}=\frac{A B}{A C}$

Connection and Exploration

$\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=$?
What is the value of the $\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}$?
Statement :
In $\triangle A B C, \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
$\frac{a}{\sin A}=\frac{\mathrm{b}}{\sin B}=\frac{\mathrm{c}}{\sin C}=2 \mathrm{R}$, but how this is done?

Let O be the centre of a circle inscribing $\triangle A B C$,
Connect AO and extend AO to meet the circle at D
$\mathrm{AD}=$ diameter.
$\Rightarrow \angle D B A=90^{\circ}, \angle B D A=\angle A C B$

In right angle triangle ABD ,
$A B=A D \cdot \sin \angle B D A=A D \cdot \sin C=2 R \sin C$
$\Rightarrow c=2 R \sin C$
Similarly, $a=2 R \sin A, b=2 R \sin B$

$\Rightarrow \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$

Discussion and assessment
Only two of the three relations in sine rule is independent

1. From $\frac{a}{\sin A}=\frac{b}{\sin B}, \frac{b}{\sin B}=\frac{c}{\sin C}$, we have $\frac{c}{\sin C}=\frac{a}{\sin A}$
2. From $\frac{a}{\sin A}=\frac{b}{\sin B}$, there may exist positive number c and angle C , so that $\frac{b}{\sin B}=\frac{c}{\sin C}$ or such result does not hold.

Connection and exploration

The deduction of mathematical concepts from given problem
The following result is given to student and they are asked to related them to Sine Rule.

From "Element, Theorem 20, book 3"
In a circle, the angle subtends by the same arc at the centre is twice the angle subtend at the circumference.

Extension 1

The angle subtended at the circumference are the same (theorem 21 of Element);

Extension 2

Angle subtended at the centre is a right angle.

(1) Theroem 21

(2) Angle subtended are right angle

Using the results, the class can prove the Sine Rule.

Sine Rule (Obtuse angle)

When γ is acute，centre of the circle is lies inside the triangle．
$\Delta \mathrm{ABC}$ inscribed in the circle with radius r，centre O ．
And $\angle A O B=2 \angle A C B=2 \gamma$ ．
From O draws AB，the perpendicular
bisector，then $\sin \gamma=\left(\frac{\mathrm{c}}{2}\right) / r$ ，
$\Rightarrow \frac{\mathrm{c}}{\sin \gamma}=2 \mathrm{r}$
$\Rightarrow \frac{a}{\sin \alpha}=\frac{\beta}{\sin \beta}=\frac{c}{\sin \gamma}=2 r$

When γ is obtuse，the centre of the circle is outside the triangle．The $\operatorname{arc} \mathrm{AB}$ is more than half of the circumference， hence the angle at O of $\triangle \mathrm{AOB}$ is
$\gamma^{\prime}=360^{\circ}-2 \gamma$ 。
From O draws AB ，the perpendicular bisector，then $\frac{\sin \gamma^{\prime}}{2}=\left(\frac{c}{2}\right) / r$ 。

But $\frac{\sin \gamma^{\prime}}{2}=\sin \left(180^{\circ}-\gamma\right)=\sin \gamma$,
Hence $\frac{c}{\sin \gamma}=2 r$ ．

Cosine Rule

Proof of Cosine Rule 1

Extension of Pythagoras Theorem

Using Pythagoras Theorem
$(\mathrm{a} \operatorname{SinC})^{2}+(-a \operatorname{Cos} \mathrm{C}+\mathrm{b})^{2}=\mathrm{c}^{2}$ 。
$\Rightarrow(\mathrm{a})^{2}+(\mathrm{b})^{2}-2 \mathrm{abCos} \mathrm{C}=\mathrm{c}^{2}$ 。

$$
\begin{aligned}
& \text { Result } \\
& \qquad \begin{array}{l}
c^{2}=a^{2}+b^{2}-2 a b \cos C \\
\text { In } \triangle A B C \text {, we have } \\
a^{2}=b^{2}+c^{2}-2 b c \cos A \\
b^{2}=a^{2}+c^{2}-2 a c \cos B
\end{array}
\end{aligned}
$$

Cosine Rule Proof 2

Through A，construct $\mathrm{AD} \perp \mathrm{BC}$ and meet at D then $C D=b \cos C$ ，

$$
B D=a-b \cos C
$$

Hence $c^{2}-B D^{2}=A D^{2}=b^{2}-C D^{2}$
$\Rightarrow c^{2}-(a-b \cos C)^{2}=b^{2}-b^{2} \cos ^{2} C$
$\Rightarrow \quad c^{2}=a^{2}+b^{2}-2 a b \cos C$

Similarly，$a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
b^{2}=a^{2}+c^{2}-2 a c \cos B
$$

Cosine Rule Proof 3

$b \cos A+a \cos B=c \quad \Rightarrow c b \cos A+c a \cos B=c^{2}$
$c \cos B+b \cos C=a, \Rightarrow a c \cos B+a b \cos C=a^{2}$
$a \cos C+c \cos A=b, \Rightarrow a b \cos C+b c \cos A=b^{2}$

From the above formula，
$a^{2}+b^{2}=a c \cos B+b c \cos A+2 a b \cos C=c^{2}+2 a b \cos C$
$\Rightarrow c^{2}=a^{2}+b^{2}-2 a b \cos C$

Similarly，
$a^{2}=b^{2}+c^{2}-2 b c \cos A$ ，
$b^{2}=a^{2}+c^{2}-2 a c \cos B$ ．

Connection（Heron Formula）

A
B

From the diagram，obtain $x^{2}=\frac{\left[(b+c)^{2}-a^{2}\right]\left[a^{2}-(b-c)^{2}\right]}{4 c^{2}}$ 。
Area of triangle $=\frac{1}{2} c x$
$=\frac{1}{2} c x \frac{\sqrt{\left[(b+c)^{2}-a^{2}\right]\left[a^{2}-(b-c)^{2}\right]}}{2 c}$
$=\frac{1}{4} \sqrt{\left[(b+c)^{2}-a^{2}\right]\left[a^{2}-(b-c)^{2}\right]}$ 。
Which is the same as $\sqrt{\mathrm{p}(\mathrm{p}-a)(\mathrm{p}-b)(\mathrm{p}-c)}$ ，where $\mathrm{p}=\frac{1}{2}(a+b+c)$ 。

From the following format，a number of assessments can be generated．

Question Format :
In $\triangle A B C, \mathrm{D}$ is a point on BC

Question :

In $\triangle A B C$, a point D on $\overline{B C}$ satisfy $\overline{A B}=5, \overline{A C}=7, \overline{B D}=3, \overline{C D}=5$,
then $\overline{A D}=$?

In $\triangle A B C, \cos B=\frac{5^{2}+8^{2}-7^{2}}{2 \times 5 \times 8}=\frac{1}{2}$
And in $\triangle A B D, \overline{A D}^{2}=\overline{A B}^{2}+\overline{B D}^{2}-2 \overline{A B} \cdot \overline{B D} \cos B$

$$
\begin{aligned}
& =25+9-15=19 \\
& \Rightarrow \overline{A D}=\sqrt{19}
\end{aligned}
$$

Question :

In $\triangle A B C$, point D on $\overline{B C}$ satisfy $\overline{A B}=6, \overline{A C}=3 \sqrt{2}, \angle B A D=30^{\circ}$ and $\angle C A D=45^{\circ}$, find $\overline{A D}$.

Let $\overline{A D}=x$, Area $\triangle A B D+\triangle A C D=\triangle A B C$
$\Rightarrow \frac{6 x}{2} \sin 30^{\circ}+\frac{3 \sqrt{2} x}{2} \sin 45^{\circ}=\frac{6 \times 3 \sqrt{2}}{2} \sin 75^{\circ}$
$\Rightarrow \frac{3 x}{2}+\frac{3 x}{2}=\frac{9 \sqrt{2}}{4}(\sqrt{6}+\sqrt{2})$
$\Rightarrow x=(\sqrt{3}+1)$

Question :
In $\triangle A B C, \overline{A C}=8, \overline{B C}=11$,
D is a point on C and $\overline{A D}=7, \overline{B D}=6$.
Find $\overline{A B}$

$\overline{C D}=5$, solving C from $\triangle A C D$, and obtain $\overline{\mathrm{AB}}$ from $\triangle A B C$.
In $\triangle \mathrm{ACD}, \cos C=\frac{8^{2}+5^{2}-7^{2}}{2 \times 8 \times 5}=\frac{1}{2}$
In $\triangle \mathrm{ABC}, \overline{A B}^{2}=8^{2}+11^{2}-2 \times 8 \times 11 \cos C=64+121-88=97$
$\Rightarrow \overline{A B}=\sqrt{97}$

Question :

In $\triangle \mathrm{ABC}, \overline{A B}=7, \overline{A C}=8$,
D is a point on BC , and $\overline{A D}=\sqrt{31}, \overline{B D}: \overline{C D}=2: 3$
Find $\overline{B C}$.

Let $\overline{B D}=2 k, \overline{C D}=3 k$.
By common angle B, the triangle $\triangle A B D$ and $\triangle A B C$ both has one angle and three sides, Using cosine rule, B and k are solved.
In $\triangle A B D, \cos B=\frac{(2 k)^{2}+7^{2}-(\sqrt{31})^{2}}{2 \times 2 k \times 7}=\frac{2 k^{2}+9}{14 k}$
In $\triangle A B C, \cos B=\frac{(5 k)^{2}+7^{2}-8^{2}}{2 \times 5 k \times 8}=\frac{5 k^{2}-3}{14 k}$
$\Rightarrow \frac{2 k^{2}+9}{14 k}=\frac{5 k^{2}-3}{14 k}$
$\Rightarrow k=2$

$$
\Rightarrow \overline{B C}=5 k=10
$$

Assessment, there are three types of questions.
A Two sides and two angles, find the third side.

Q	Length		Angles	Answer	
1	$\overline{B D}=50$	$\overline{B C}=200$	$\angle A D B=60^{\circ}$	$\angle A C B=30^{\circ}$	$\overline{A B}=50 \sqrt{7}$
2	$\overline{A B}=6 \sqrt{2}$	$\overline{A C}=2 \sqrt{3}$	$\angle B A D=30^{\circ}$	$\angle C A D=45^{\circ}$	$\overline{A D}=3 \sqrt{2}$
3	$\overline{B D}=4$	$\overline{C D}=4 \sqrt{3}$	$\angle A B C=45^{\circ}$	$\angle A C B=30^{\circ}$	$\overline{A D}=4$
4	$\overline{A C}=7$	$\overline{B D}: \overline{C D}=2: 3$	$\angle B A D=45^{\circ}$	$\angle C A D=60^{\circ}$	$\overline{A B}=2 \sqrt{6}$

B Three sides and an angle given, find another length.

Q	Length			Angles	Answer
1	$\overline{A B}=8$	$\overline{A C}=6 \sqrt{3}$	$\overline{A D}=6$	$\angle C A D=30^{\circ}$	$\overline{B D}=3+\sqrt{37}$
2	$\overline{A B}=4$	$\overline{A C}=7$	$\overline{B D}=4$	$\angle A B C=60^{\circ}$	$\overline{C D}=-2+\sqrt{37}$
3	$\overline{A D}=5$	$\overline{A C}=8$	$\overline{B D}=7$	$\angle C A D=60^{\circ}$	$\overline{A B}=2 \sqrt{21}$
4	$\overline{A B}=4$	$\overline{A C}=2 \sqrt{10}$	$\overline{C D}=4$	$\angle A B C=45^{\circ}$	$\overline{B D}=6 \sqrt{2}-4$
5	$\overline{A B}=3$	$\overline{A C}=5$	$\overline{B D}=\overline{C D}$	$\angle B A C=120^{\circ}$	$\tan \angle B A D=5 \sqrt{3}$
6	$\overline{B D}=3$	$\overline{D C}=6$	$\overline{A B}=\overline{A D}$	$\angle B A D=\angle C A D$	$\cos \angle B A D=\frac{3}{4}$

C Four lengths are given, find the fifth length

Q	Length			Answers	
1	$\overline{A B}=7$	$\overline{A D}=13$	$\overline{B D}=7$	$\overline{C D}=8$	$\overline{A D}=7$
2	$\overline{A B}=7$	$\overline{A D}=3$	$\overline{B D}=5$	$\overline{C D}=2$	$\overline{A C}=\sqrt{7}$
3	$\overline{A B}=5$	$\overline{A C}=5$	$\overline{B D}=2$	$\overline{A D}=4$	$\overline{C D}=\frac{9}{2}$

Assessment

Which Rule to use, Sine Rule or Cosine Rule?
The important part of mathematics is thinking, usually students learn a theorem and
then they apply the theorem at some given situations.
For example, the following two exercises require students to use Cosine Rule and Sine Rule.

Question :
In $\triangle A B C, a=5, b=8, c=7$. Find $\angle C=$.

From the conditions given, student need to relate that three sides given satisfies the requirement of the cosine rule.
And $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{5^{2}+8^{2}-7^{2}}{2 \times 5 \times 8}=\frac{1}{2}$
$\Rightarrow \angle C=60^{\circ}$

Question :
In $\triangle A B C, \angle A=105^{\circ}, \angle B=45^{\circ}, b=8 \sqrt{2} . c=$?

From the conditions given, two angles can only related to the using of Sine Rule,
$C=180^{\circ}-A-B=30^{\circ}$
Hence $\frac{c}{\sin C}=\frac{b}{\sin B} \Rightarrow \frac{c}{\sin 30^{\circ}}=\frac{9 \sqrt{2}}{\sin 45^{\circ}}$
$\Rightarrow \frac{c}{\frac{1}{2}}=\frac{8 \sqrt{2}}{\frac{\sqrt{2}}{2}}$
$\Rightarrow c=8$

In the following, students need to think of how to use the two theorems.

Discussion

By $\frac{\sin A}{a}=\frac{\sin B}{b}$, we have $\frac{a}{b}=\frac{\sin A}{\sin B}$ 。
If $\mathrm{B}=2 \mathrm{C}$, then $\frac{b}{c}=\frac{\sin 2 C}{\sin C}=\frac{2 \sin C \cos C}{\sin C}=2 \cos \mathrm{C}$ 。
\Rightarrow the ratio of sides b and c is $2 \cos \mathrm{C}$.

Question :
In $\triangle A B C, b=8, c=5, \angle B=2 \angle C$ 。
Find the value of $\cos \angle A$.

By $\angle B=2 \angle C$, we have $A=180^{\circ}-3 C$,
$\cos A=\cos \left(180^{\circ}-3 C\right)=-\cos 3 C$, the question is to find $\cos C$.

The rest is to use Sine Rule.
$\frac{b}{\sin B}=\frac{c}{\sin C} \Rightarrow \frac{8}{\sin 2 C}=\frac{5}{\sin C}$
$\Rightarrow 5 \sin 2 C=8 \sin C$
$\Rightarrow 10 \sin C \cos C=8 \sin C$
$\Rightarrow \cos C=\frac{4}{5} \quad($ as $\sin C \neq 0)$
Hence $\cos A=\cos \left(180^{\circ}-3 C\right)=-\cos 3 C$

$$
\begin{aligned}
& =-\left(4 \cos ^{3} C-3 \cos C\right) \\
& =-\left[4\left(\frac{4}{5}\right)^{3}-3\left(\frac{4}{5}\right)\right]=\frac{44}{125}
\end{aligned}
$$

Question:
In the trapzeum $A B C D, \overline{A B} / / \overline{C D}, \overline{A B}=10, \overline{B C}=5, \overline{C D}=5, \overline{D A}=6$.
Find $\overline{A C}$.

From common side $\overline{A C}=x$
As $\overline{A B} / / \overline{C D}$ ，let $\angle A C D=\angle C A B=\theta$ 。
Using Cosine Rule， $\cos \theta=\frac{x^{2}+5^{2}-6^{2}}{2 \times x \times 5}$ and $\cos \theta=\frac{x^{2}+10^{2}-5^{2}}{2 \times x \times 10}$
$\Rightarrow \frac{x^{2}+5^{2}-6^{2}}{2 \times x \times 5}=\frac{x^{2}+10^{2}-5^{2}}{2 \times x \times 10}$
$\Rightarrow 2\left(x^{2}-11\right)=x^{2}+75$
$\Rightarrow x^{2}=97$
$\Rightarrow x=\sqrt{97}$

Exploration

Question ：
Prove that the sum of product of distances and the sine of the angle from a point inside a triangle to the three sides is a constant．
That is，$h_{a} \sin A+h_{b} \sin B+h_{c} \sin C$ is a constant．

Let P any point inside $\triangle A B C$ ，and denote $A B=c, B C=a, C A=b$ ，
The distance from P to a, b, c are $h_{a}, ~ h_{b}, ~ h_{c}$ ．
Connect $P A, P B$ and $P C$ 。
$S_{\triangle P A B}+S_{\triangle P B C}+S_{\triangle P C A}=S_{\triangle A B C}=\Delta$
$\Rightarrow \frac{1}{2} c h_{c}+\frac{1}{2} a h_{a}+\frac{1}{2} b h_{b}=\Delta$

To allow the common part of a, b, c 中，using sine rule（ $2 R$ is the diameter of the circle inscribe $\triangle A B C): \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$
then $R \sin A \cdot h_{a}+R \sin B \cdot h_{b}+R \sin C \cdot h_{c}=\Delta$
$\Rightarrow h_{a} \sin A+h_{b} \sin B+h_{c} \sin C=\frac{\Delta}{R}$

Question :

The sides of $\triangle A B C$ are $\mathrm{a}, \mathrm{b}, \mathrm{c}$, and $\frac{b}{c-a}-\frac{a}{c+b}=1$, find the largest angle of
$\triangle A B C$.
$\frac{b}{c-a}-\frac{a}{c+b}=1$
$\Rightarrow b(c+b)-a(c-a)=c^{2}+c b-a c-a b$
From $\mathrm{c}>\mathrm{a}$, and $b^{2}+a^{2}+a b=c^{2}$, so $\mathrm{c}>\mathrm{b}$.
Uisng Cosine Rule, $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}=-\frac{1}{2}$,
$\Rightarrow \mathrm{C}=120^{\circ}$

Only Two of the three relations in the Cosine Rule are independent, from two of the three, the third relation could be deduced.

By $a^{2}=b^{2}+c^{2}-2 b c \cos A$, and $b^{2}=c^{2}+a^{2}-2 c a \cos B$
That is, $\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$, and $\cos B=\frac{c^{2}+a^{2}-b^{2}}{2 c a}$

$$
\because A+B+C=180^{\circ}
$$

Then, $\cos C=\cos \left[180^{\circ}-(A+B)\right]=-\cos (A+B)$

$$
\begin{aligned}
& =\sin A \sin B-\cos A \cos B \\
& =\sqrt{1-\cos ^{2} A} \cdot \sqrt{1-\cos ^{2} B}-\cos A \cos B \\
= & \sqrt{1-\left(\frac{b^{2}+c^{2}-a^{2}}{2 b c}\right)^{2}} \cdot \sqrt{1-\left(\frac{c^{2}+a^{2}-b^{2}}{2 c a}\right)^{2}}-\frac{b^{2}+c^{2}-a^{2}}{2 b c} \cdot \frac{c^{2}+a^{2}-b^{2}}{2 c a} \\
= & \frac{2\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)-\left(a^{4}+b^{4}+c^{4}\right)}{4 a b c^{2}}+\frac{a^{4}+b^{4}-c^{4}-2 a^{2} b^{2}}{4 a b c^{2}} \\
= & \frac{2\left(b^{2} c^{2}+c^{2} a^{2}\right)-2 c^{4}}{4 a b c^{2}} \\
= & \frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
\therefore & c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

By $a^{2}=b^{2}+c^{2}-2 b c \cos A$, there may or may not exist angle B, such that $b^{2}=c^{2}+a^{2}-2 c a \cos C$

Assessment（Sine Rule）

1	In $\triangle \mathrm{ABC}, \sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B}=\sin ^{2} \mathrm{C}$, prove that $\triangle \mathrm{ABC}$ is a right angle triangle．
2	In $\triangle \mathrm{ABC}$, if $\quad \operatorname{acos} \mathrm{A}=\mathrm{b} \cos \mathrm{B}$, what kind of triangle is $\triangle \mathrm{ABC} ?$
3	In $\triangle \mathrm{ABC}$, prove that $\frac{\sin \mathrm{A}+\sin \mathrm{B}}{\sin \mathrm{C}}=\frac{\mathrm{a}+\mathrm{b}}{\mathrm{c}}$.

Assessment，Cosine Rule

1	For $\triangle \mathrm{ABC}$, prove that $\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=2(\mathrm{bc} \operatorname{Cos} \mathrm{A}+\mathrm{acCos} \mathrm{B}+\mathrm{abCosC}) \circ$
2	Using Cosine Rule to prove The＂sum of squares of the sides of a paralellgram＂equals＂the sum of the square of the diagaonls＂．

Mixed Assessment

1	In $\triangle \mathrm{ABC}, \angle \mathrm{A}=2 \angle \mathrm{~B}$ ，prove that $\mathrm{a}=2 \mathrm{~b} \cos \mathrm{~B}$ ．
2	In $\triangle \mathrm{ABC}, \quad \angle \mathrm{C}=2 \angle \mathrm{~B}$ ，prove that $\frac{\sin 3 \mathrm{~B}}{\sin \mathrm{~B}}=\frac{a}{b}$ 。
3	在 $\triangle \mathrm{ABC}$ 中， $\sin \mathrm{A}(\cos \mathrm{B}+\cos \mathrm{C})=\sin \mathrm{B}+\sin \mathrm{C}$ ，prove that $\triangle \mathrm{ABC}$ is a right angle triangle
4	In $\triangle \mathrm{ABC}$ ，if $\frac{a}{\cos A}=\frac{\mathrm{b}}{\cos B}=\frac{\mathrm{c}}{\cos C}$ ，prove that $\triangle \mathrm{ABC}$ is an equilateral triangle．
5	In $\triangle \mathrm{ABC}, \frac{a^{2}-(b-c)^{2}}{b c}=1$ ，find $\angle \mathrm{A}$ ．
6	In $\triangle A B C, \sin A=2 \sin B \cos C$ ，show that $\triangle A B C$ is issolsoles triangle．
7	The sum of two sides of a triangle is 10 ，the included angle is 60° ，find the minimum perimeter of this triangle．

References

Hong Kong Examination and Assessment Authority（2008），Examiner Report．Hong

Kong SAR.
Education Department (1999), Secondary Mathematics Curriculum, Hong Kong SAR.

